Nikhil Kanamarla
CS 598 AIE

Alpa: Automating Inter- and Intra-Operator Parallelism for
Distributed Deep Learning

This work is important because parallelism strategies are crucial for efficiently training today’s
large machine learning models, delivering as much as an order of magnitude performance
improvement when implemented correctly vs. incorrectly, according to the authors of Alpa. While
certain parallelism strategy generation techniques existed when the paper was written, none
could produce a comprehensive parallelism strategy to train a given machine learning model on
any given hardware system. Thus, experts had to manually produce and implement custom
parallelism strategies tailored to their application. Regardless of the type of accelerator(s) used
for training, such an approach requires significant manual effort and familiarity with the system.
As such, given the importance of an effective parallelism strategy and the complexity of
hand-crafting one, there is a strong case for more thoroughly automating the formulation of
parallelism strategies. The problem this paper is trying to tackle is automating parallelism for
distributed training. Doing so would hasten the machine learning development development
cycle and to ensure the strategies are well-suited to the underlying hardware and system
architecture, regardless of whether the user is well-acquainted with it. Thus, Alpa proposes a
compiler for finding execution plans with an appropriate parallelism strategy for a given
combination of model and hardware system.

The main idea of this paper is that Alpa introduces a two-level hierarchical execution plan space
for DL models, utilizing inter-operator and intra-operator parallelisms. Alpa's compiler
automatically derives efficient parallel execution plans at each level and implements a runtime to
orchestrate these plans on distributed devices. It addresses data, operator, and pipeline
parallelism in a unified and automated way. The authors of Alpa choose to classify parallelism
as intra-operator or inter-operator, instead of using the model, data, and pipeline parallelism that
we commonly see. In the context of machine learning models, operators refer to functions like
matrix multiplication and activations. As their names imply, inter-operator parallelism strategies
are those which divide different operators in a model, while intra-operator parallelism splits
individual operators along some dimension (batch or non-batch) across different computational
units. The authors use pipeline parallelism as an example of inter-operator parallelism, since it
splits the model at the layer granularity. On the other hand, data and model parallelism are
examples of intra-operator parallelism since they involve spreading individual operators across
multiple devices. A crucial observation made by Alpa is that different parallelism strategies incur
different levels of communication overhead between devices. Specifically, intra-operator
parallelism typically requires a large amount of communication while inter-operator parallelism
requires relatively little. This is because splitting the computation of individual operators across
several devices requires these devices to communicate significantly with each other to split the
operator and merge their results. Meanwhile, inter-operator parallelism only requires



communication to transfer the result of a prior operator to the device(s) responsible for the
subsequent operators, which causes relatively little data transfer. The authors also note the
disparate bandwidth available between devices within a node and devices between nodes —
devices within a node are linked with high bandwidth connections while more distant devices
have lower bandwidth available to them. They see that this difference in bandwidth can be
effectively mapped onto communication difference between intra- and inter-operator parallelism,
indicating that we should utilize communication-intensive intra-operator parallelism on devices
within the same node and save the communication-light inter-operator parallelism strategies for
separate nodes. This allows the overall parallelism optimization problem into two sub-problems,
one for intra-operator parallelism and one for inter-operator parallelism. The first part of
determining the parallelism strategy involves thinking about how we should distribute the
operators amongst available computing resources. Alpa starts by deciding how to form stages —
groups of operators — from the list of operators and also how best to assign these stages to form
groups of computing devices to handle each stage. Given an overall cluster mesh of N x M
devices, Alpa only considers making device meshes of size 1x2*m, (N x s), or (s x M) to avoid
wasting resources. To find the best inter-operator parallelism strategy, Alpa first computes the
time needed for a given device mesh to compute a given stage using the intra-operator
parallelism algorithm discussed below. Then, they apply dynamic programming with some extra
performance optimizations to determine the inter-operator execution plan. Given an operator
and device mesh — a group of identical computing devices with high communication bandwidth
between them, Alpa computes a suitable intra-operator parallelism strategy to evenly distribute
the work between devices in the mesh. It considers the various ways the operator can be
sharded amongst the devices and solves an integer linear programming problem to determine
the best decision plan to minimize the a combination of communication, computation, and
resharding overhead — the cost of reorganizing a tensor whose original dimensions are not
compatible with the parallelism strategy. After determining the parallelism strategy, Alpa runs a
final parallelism orchestration to optimize inter-stage communication between meshes of
different sizes, before creating execution instructions for each mesh. The resulting execution
plans perform well across a variety of models. In their evaluation, the authors compare Alpa’s
automatically generated execution plan to manually-optimized Megatron-LM execution plans on
GPT3 and find it performs similarly. When running a MoE model, the authors find their
consideration of inter-operator parallelism helps Alpa maintain better performance scaling than
DeepSpeed. Finally, when applied to a model with a complex, heterogeneous structure like
WideResNet where generating an execution plan by hand is infeasible, Alpa significantly
outscales the competition with its execution plan.

There are many strengths of this work. Alpa’s hierarchical approach to parallelism is a novel
contribution that makes existing parallelism strategies much easier to use. Secondly, empirical
results show that Alpa matches the training throughput of hand-tuned parallelism strategies.
There are some limitations of this work. While Alpa delivers strong empirical results, it does not
claim a globally optimal execution plan. This implies that Alpa leaves room for improvement in
most cases, although there may not be much. Further, there are certain limitations to the
algorithm. In particular, it does not model inter-stage communication because doing so would
significantly increase the search space. While the size of most inter-stage communication is



currently quite small, if this ever stops being true, we will need to revise Alpa to account for it.
Further, Alpa does not attempt to optimize batch size in its inter-operator objective function and
also only considers static schedules and computation graphs. The formulation only considers
synchronous training.

There are also some future research directions of this work. This work is primarily concerned
with parallelism strategies for training, but it seems many of the optimizations discussed in the
paper could also be useful for model inference. Even though the device mesh layouts would
probably be simpler during inference, it would be interesting to see if Alpa would improve
serving throughput. A major contribution of Alpa is the division of a cluster mesh composed of
identical devices into possibly differently sized device meshes. Given that there are now many
different types/generations of accelerators now in circulation, it might be useful to extend this ML
compiler framework to enable scheduling on heterogeneous devices to help companies better
reuse their older hardware.



